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XPRESS Goals, Objectives, and Approach

=  Goals:

Enable exascale performance capability for current and future DOE applications

Develop and deliver a practical computing system software X-stack , “OpenX”, for future
practical DOE computing systems

Provide programming methods, environments, languages, and tools for effective means
of expressing application and system software for portable exascale system execution

=  QObjectives:

Derive a dynamic adaptive introspective strategy for exploiting opportunities and
addressing critical exascale technology challenges in the form of an abstract execution
model

Devise a software architecture as a framework for future exascale system design and
implementation

Implement core interrelated and interoperable components of the software
architecture to realize a fully working and usable system

Test, evaluate, validate, and demonstrate correctness, performance, resiliency, and
energy efficiency

Provide technology transfer through cooperative engagement of industry hardware and
software vendors and national labs via documentation and training

= Approach

Research, develop, and deploy a software stack to exploit the ParalleX execution model



ParalleX Execution Model

= An execution model to provide the governing principles of computation to guide the
system codesign and interoperability of software component layers and portability
across system classes

= Goalis to provide conceptual foundation to dramatically increase efficiency and
scalability through transition from static to dynamic resource management and task
scheduling and exploitation of new sources of parallelism

= Key semantic constructs
= Active Global Address Space (“AGAS”) for single system image
=  First class lightweight user threads for medium-gain parallelism
=  “Parcels” message-driven computing for latency mitigation
= Local Control Objects (“LCO”) for powerful system synchronization

= Performance strategy

=  Scalability through lightweight thread level parallelism, overlapping successive phases of
computation with powerful synchronization and elimination of global barriers, automatic exposure/

exploitation of intrinsic meta-data parallelism, effective use of finer grain parallelism through
reduction of overhead that bounds granularity

= Latency mitigation through parcels by reducing # of long distance actions (split-phase transactions),
localizing remote data and work, migrating continuations to change locus of continued execution
with data structure, lightweight thread context switching, and direct in-memory and parcel
generation without thread instantiation, and locality semantics

= QOverhead reduction is derived by powerful semantics of synchronization for minimum work,
optimized thread control

= Contention amelioration through dynamic resource management
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LXK — Lightweight eXascale Kernel

= Based on Sandia’s Kitten lightweight kernel

Boots identically to Linux

Repurposes basic Linux functionality (PCI, NUMA, ACPI, etc.)
Supports POSIX threads (NPTL) and OpenMP

Allows innovation in key areas
Memory management
Multicore messaging
Network stack optimizations
Fully tick-less operation

= 20K LOC

= Allows for re-thinking OS structure and implementation of
= Lightweight asynchronous system services
= Dynamic composability and modularity
= Adaptive resource policy enforcement mechanisms
= Interface to runtime system(s)
= |ntegrated instrumentation and monitoring



Kitten Implementation

Monolithic, C code, GNU toolchain, Kbuild configuration
= Supports x86-64 architecture only, considering port to ARM
= Boots on standard PC architecture, Cray XT, and in virtual machines
= Boots identically to Linux (Kitten bzlmage and init_task)
= Repurposes basic functionality from Linux
= Hardware bootstrap
= Basic OS kernel primitives (lists, locks, wait queues, etc.)
= PCl, NUMA, ACPI, IOMMU, ...
= Directory structure similar to Linux, arch dependent/independent dirs

Custom address space management and task management
= User-level API for managing physical memory, building virtual address spaces
= User-level API for creating tasks, which run in virtual address spaces
= User-level API for migrating tasks between cores



Kitten Thread Support

= Kitten user-applications link with standard GNU C library
(Glibc) and other system libraries installed on the Linux build
host

" Functionality added to Kitten to support Glibc NPTL POSIX
threads implementation
= Futex() system call (fast user-level locking)
= Basic support for signals
= Match Linux implementation of thread local storage
= Support for multiple threads per CPU core, preemptively scheduled

= Kitten supports runtimes that work on top of POSIX threads
= Glibc GOMP OpenMP implementation

= Sandia Qthreads
= Probably others with a little effort




HPX Runtime System

= A next-generation runtime system software layer that supports the semantics of
the ParalleX execution model for significant increase in efficiency and scalability

=  HPX-3 provides

= Existing early proof-of-concept software dynamic adaptive resource management, task
scheduling, global name space, efficient powerful synchronization, and Parcel message-
driven computation. Interfaces with conventional Unix-like OS.

= HPX-4

= Modular system software architecture with specified functionality, interfaces and
protocols for intra-operability and interfaces to OS and programming environment

= |ntrospection closed-loop system for
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XPl — Low-Level Intermediate Form

= User programming syntax and source-to-source compiler target for
high-level programming languages

" Provides stable application platform based on HPX, which is
expected to change underneath throughout project

= Alibrary of C-bindings to represent lowest-level semantics, policies,
and mechanisms for ParalleX execution model

= XPI construct classes
= Process
= Thread
= Locality
= Parcel
= Future
= Dataflow
= Housekeeping



XPRESS Information Flow

= Passing information between layers will be critical
= |n current systems information flows one direction

= For Exascale static scheduling decisions will not work

= Dynamic environment
= Billion-way parallelism
= Resilience

Reliability

Energy

Shared resource contention

= Feedback will be required



Performance Information as Glue

= Performance information
= Current — post-execution performance tools
= Exascale — dynamic application introspection

= For performance and reliability thread/core/node/system
knowledge will be critical throughout the software stack

= |nterfaces designed to enable information flow
Utilities need to know current system performance
Utilities need to know how other utilities are reacting



Exascale Performance Observability

" Exascale requires a fundamentally new observability

paradigm Computational

= Reflects translation of application and mapping of Model

computation model to execution model

S 5
= Designed specifically to support introspection of %_’ o) g
runtime performance for adaptation and control = P 3T
o

= Aware of multiple objectives > e %
System-level resource utilization data and analysis, § ; :\,
energy consumption, and health information 3 Q.
= Ee)
= Exascale observability abstraction ° 5

= Inherent state of exascale execution is dynamic EXI\‘:C:“:’“

ode

= Embodies non-stationarity of performance, energy,
resilience during application execution

= Constantly shaped by the adaptation of resources to meet
computational needs and optimize execution objectives
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APEX

= XPRESS performance measurement/analysis/introspection

= (QObservation and runtime analysis of performance, energy, and
reliability

= Online introspection resource utilization, energy consumption, and
health information

= Coupling of introspection with OpenX software stack for self-adaptive
control
= APEX: Autonomic Performance Environment for eXascale
= Support performance awareness and performance reactivity
= Couple with application and execution knowledge
= Serve top-down AND bottom-up requirements of OpenX
= Performance overlay on OpenX



APEX’ s Role for Top-Down OpenX Requirements

= Top-down requirements are driven by:

Mapping of applications to the ParalleX model

Translation through the programming models and the language compilers into runtime
operations and execution

Performance abstractions (PA) at each level define:
set of parameters to be observed by the next levels down

Performance model to be evaluated and provide basis for control

Performance abstractions are coupled with observations through APEX’ s hierarchical
performance framework

Realization of control mechanisms (reactive to PA actualization)

= Top-down view sees APEX functionality as part of the application’ s execution,
specialized with observability and introspection support built into each OpenX
layer:

LXK OS — system resource, utilization, job contention, overhead
HPX — threads, queues, concurrency, remote, parcels, memory
XPl/Legacy — language-level performance semantics



APEX’ s Role for Bottom-Up OpenX Requirements

= Bottom-up requirements are driven by:
= Performance introspection across the OpenX layers
= Enable dynamic, adaptive operation, and decision control
= Online access and analysis of observations at different levels
= Working model is multi-parameter system optimization

= APEX creates the performance feedback mechanisms and
builds an efficient hierarchical infrastructure for connecting
subscribers to runtime performance state
= |ntra-level performance awareness for HPX and LXK
= |nterplay with the overall application dynamics (top-down)

Top-down requirement implement constraints

= Performance information is the result of runtime analysis



Top-Down Development Approach

= Define performance abstraction (focusing on higher level)

= Specify observability requirements, and results semantics
= Provide application context for association

= What are the performance models, attributes, factors?

= Build into legacy languages and XPI
= APEX programming of PA infrastructure
= |Invokes HPX performance measurement API
= |ntegrate TAU capabilities for APEX realization
= |nstrumentation
legacy programming (MPI, OpenMP, OpenACC)
imperative API (XPI) for ParalleX programming
= TAU mapping for measurement contextualization
= Wrapper interposition to intercept HPX runtime layer

= Create introspection API for feedback



Legacy Application Migration and Interoperability

= Seamless migration, no modification needed for apps
= Retargeting OpenMP compiler to OpenX
= Adapting MPI to OpenX, need MPI system-level adjustment, and change of
configuration logic
= Two approaches for retargeting OpenMP via XPI:

= Through a POSIX compliant interface using XPI, e.g. pthreads on top of XPI
+: No (or minor) modification needed to OpenMP compiler
-: May only use a limited subset of OpenX features

= Rewrite OpenMP compiler and runtime to XPI
+: Explore OpenX advanced features
=  OpenACCintegration with OpenX

= Adapt the OpenACC data movement mechanism to OpenX communication parcels
in the AGAS

= |ntegrate accelerator kernel execution of OpenACC with the OpenX execution
model

= Evaluation:
= Applications: Mini-apps with MPI+OpenMP/OpenACC
= Performance and productivity feedback to the OpenX implementation team
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