Sandia
Exceptional service in the national interest @ National

Laboratories

eXascale Programming Environment and System Software
(XPRESS)

Ron Brightwell, Technical Manager
Scalable System Software Department

g ﬁ"'e% U.S. DEPARTMENT OF ///A ' 'DQ,’SI
] EN ERGY)/} VA'Q-:% Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
% ‘National Nuclear Security Administration Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

XPRESS Team

Sandia
National
Laboratories

-~

| A
Frreeeeer Im

N
LS

(Bl

il

/‘\

OAK
Sandia National Laboratories RIDGE

. National Laboratory
with

Indiana University
Lawrence Berkeley National Laboratory
Louisiana State University

Oak Ridge National Laboratory
University of Houston
University of North Carolina at Chapel Hill

University of Oregon

Organization Chart

DOE/ASCR
Bill Harrod
Sonia Sachs
Principal Investigator
Ron Brightwell
A BAgRIE Chief Scientist

Thomas Sterling

Project Manager
Rebecca Schmitt

Thrust Areas
OS/Runtime .
Hartmut Kaiser Intermediate Form Information Flow Le%zcr;g :r\gps Instrumentation Applications
i Allan Porterfield Allen Malon Mike Heroux
Kevin Pedretti Andrew Lumsdaine Chapman y

Chris Baker

Alice
Koniges

XPRESS Goals, Objectives, and Approach

= Goals:

Enable exascale performance capability for current and future DOE applications

Develop and deliver a practical computing system software X-stack , “OpenX”, for future
practical DOE computing systems

Provide programming methods, environments, languages, and tools for effective means
of expressing application and system software for portable exascale system execution

= QObjectives:

Derive a dynamic adaptive introspective strategy for exploiting opportunities and
addressing critical exascale technology challenges in the form of an abstract execution
model

Devise a software architecture as a framework for future exascale system design and
implementation

Implement core interrelated and interoperable components of the software
architecture to realize a fully working and usable system

Test, evaluate, validate, and demonstrate correctness, performance, resiliency, and
energy efficiency

Provide technology transfer through cooperative engagement of industry hardware and
software vendors and national labs via documentation and training

= Approach

Research, develop, and deploy a software stack to exploit the ParalleX execution model

ParalleX Execution Model

= An execution model to provide the governing principles of computation to guide the
system codesign and interoperability of software component layers and portability
across system classes

= Goalis to provide conceptual foundation to dramatically increase efficiency and
scalability through transition from static to dynamic resource management and task
scheduling and exploitation of new sources of parallelism

= Key semantic constructs
= Active Global Address Space (“AGAS”) for single system image
= First class lightweight user threads for medium-gain parallelism
= “Parcels” message-driven computing for latency mitigation
= Local Control Objects (“LCO”) for powerful system synchronization

= Performance strategy

= Scalability through lightweight thread level parallelism, overlapping successive phases of
computation with powerful synchronization and elimination of global barriers, automatic exposure/

exploitation of intrinsic meta-data parallelism, effective use of finer grain parallelism through
reduction of overhead that bounds granularity

= Latency mitigation through parcels by reducing # of long distance actions (split-phase transactions),
localizing remote data and work, migrating continuations to change locus of continued execution
with data structure, lightweight thread context switching, and direct in-memory and parcel
generation without thread instantiation, and locality semantics

= QOverhead reduction is derived by powerful semantics of synchronization for minimum work,
optimized thread control

= Contention amelioration through dynamic resource management

Software Architecture

Legacy
Applications

OpenMP MPI

EEEEEEEE— XPI
vV vy Y
AGAS LCO
. name space |dataflow, futures
Runtime processor synchronization
System - -
Instances Lightweight Parcels
Threads message driven
context manager| Ccomputation
PRIME MEDIUM
Interace / Control
7
Operating System Distributed Framework s
Operating s
System - Address ©
Memory bank oS Network E’
control thread drivers ~
Hardware 6 3 . .
Architecture +10° nodes x 10° cores / node + integration network

LXK — Lightweight eXascale Kernel

= Based on Sandia’s Kitten lightweight kernel

Boots identically to Linux

Repurposes basic Linux functionality (PCI, NUMA, ACPI, etc.)
Supports POSIX threads (NPTL) and OpenMP

Allows innovation in key areas
Memory management
Multicore messaging
Network stack optimizations
Fully tick-less operation

= 20K LOC

= Allows for re-thinking OS structure and implementation of
= Lightweight asynchronous system services
= Dynamic composability and modularity
= Adaptive resource policy enforcement mechanisms
= Interface to runtime system(s)
= |ntegrated instrumentation and monitoring

Kitten Implementation

Monolithic, C code, GNU toolchain, Kbuild configuration
= Supports x86-64 architecture only, considering port to ARM
= Boots on standard PC architecture, Cray XT, and in virtual machines
= Boots identically to Linux (Kitten bzlmage and init_task)
= Repurposes basic functionality from Linux
= Hardware bootstrap
= Basic OS kernel primitives (lists, locks, wait queues, etc.)
= PCl, NUMA, ACPI, IOMMU, ...
= Directory structure similar to Linux, arch dependent/independent dirs

Custom address space management and task management
= User-level API for managing physical memory, building virtual address spaces
= User-level API for creating tasks, which run in virtual address spaces
= User-level API for migrating tasks between cores

Kitten Thread Support

= Kitten user-applications link with standard GNU C library
(Glibc) and other system libraries installed on the Linux build
host

" Functionality added to Kitten to support Glibc NPTL POSIX
threads implementation
= Futex() system call (fast user-level locking)
= Basic support for signals
= Match Linux implementation of thread local storage
= Support for multiple threads per CPU core, preemptively scheduled

= Kitten supports runtimes that work on top of POSIX threads
= Glibc GOMP OpenMP implementation

= Sandia Qthreads
= Probably others with a little effort

HPX Runtime System

= A next-generation runtime system software layer that supports the semantics of
the ParalleX execution model for significant increase in efficiency and scalability

= HPX-3 provides

= Existing early proof-of-concept software dynamic adaptive resource management, task
scheduling, global name space, efficient powerful synchronization, and Parcel message-
driven computation. Interfaces with conventional Unix-like OS.

= HPX-4

= Modular system software architecture with specified functionality, interfaces and
protocols for intra-operability and interfaces to OS and programming environment

= |ntrospection closed-loop system for

Resiliency through microcheckpointing process manager local mermory perormance 1]) perormance
Dynamic load balancing AGfAS T
. . translation
Power monitoring and control %
<2 >Z> OO
LCOs
! 1
parcel | o | E ld action §§ g
port parcel manager —
handler f manager threac]l pool

XPl — Low-Level Intermediate Form

= User programming syntax and source-to-source compiler target for
high-level programming languages

" Provides stable application platform based on HPX, which is
expected to change underneath throughout project

= Alibrary of C-bindings to represent lowest-level semantics, policies,
and mechanisms for ParalleX execution model

= XPI construct classes
= Process
= Thread
= Locality
= Parcel
= Future
= Dataflow
= Housekeeping

XPRESS Information Flow

= Passing information between layers will be critical
= |n current systems information flows one direction

= For Exascale static scheduling decisions will not work

= Dynamic environment
= Billion-way parallelism
= Resilience

Reliability

Energy

Shared resource contention

= Feedback will be required

Performance Information as Glue

= Performance information
= Current — post-execution performance tools
= Exascale — dynamic application introspection

= For performance and reliability thread/core/node/system
knowledge will be critical throughout the software stack

= |nterfaces designed to enable information flow
Utilities need to know current system performance
Utilities need to know how other utilities are reacting

Exascale Performance Observability

" Exascale requires a fundamentally new observability

paradigm Computational

= Reflects translation of application and mapping of Model

computation model to execution model

S 5
= Designed specifically to support introspection of %_’ o) g
runtime performance for adaptation and control = P 3T
o

= Aware of multiple objectives > e %
System-level resource utilization data and analysis, § ; :\,
energy consumption, and health information 3 Q.
= Ee)
= Exascale observability abstraction ° 5

= Inherent state of exascale execution is dynamic EXI\‘:C:“:’“

ode

= Embodies non-stationarity of performance, energy,
resilience during application execution

= Constantly shaped by the adaptation of resources to meet
computational needs and optimize execution objectives

OpenX

Legacy
Applications

New Model
Applications

Software Stack and APEX

OpenX Stack

\@

guage (legacy

> ParalleX API (XP

/@mime (HPX)

Domain Specific
Language Metaprogramming
OpenMP MPI Domain Specific Framework
Active Library I A
Compiler <
—p XPI
YV vy v
AGAS LCO
) name space |dataflow, futures
Runtime processor synchronization
System : : <
Instances Lightweight Parcels
Threads message driven
context manager| computation
PRIME MEDIUM
Interace / Control
7
Operating System Distributed Framework s
Operating s
System - Address 3
Instances Task recognition space control g
Memory bank 0s Network 9
control thread drivers -
Hardware

Architecture

+10° nodes x 103 cores / node + integration network

X3dv

APEX

= XPRESS performance measurement/analysis/introspection

= (QObservation and runtime analysis of performance, energy, and
reliability

= Online introspection resource utilization, energy consumption, and
health information

= Coupling of introspection with OpenX software stack for self-adaptive
control
= APEX: Autonomic Performance Environment for eXascale
= Support performance awareness and performance reactivity
= Couple with application and execution knowledge
= Serve top-down AND bottom-up requirements of OpenX
= Performance overlay on OpenX

APEX’ s Role for Top-Down OpenX Requirements

= Top-down requirements are driven by:

Mapping of applications to the ParalleX model

Translation through the programming models and the language compilers into runtime
operations and execution

Performance abstractions (PA) at each level define:
set of parameters to be observed by the next levels down

Performance model to be evaluated and provide basis for control

Performance abstractions are coupled with observations through APEX’ s hierarchical
performance framework

Realization of control mechanisms (reactive to PA actualization)

= Top-down view sees APEX functionality as part of the application’ s execution,
specialized with observability and introspection support built into each OpenX
layer:

LXK OS — system resource, utilization, job contention, overhead
HPX — threads, queues, concurrency, remote, parcels, memory
XPl/Legacy — language-level performance semantics

APEX’ s Role for Bottom-Up OpenX Requirements

= Bottom-up requirements are driven by:
= Performance introspection across the OpenX layers
= Enable dynamic, adaptive operation, and decision control
= Online access and analysis of observations at different levels
= Working model is multi-parameter system optimization

= APEX creates the performance feedback mechanisms and
builds an efficient hierarchical infrastructure for connecting
subscribers to runtime performance state
= |ntra-level performance awareness for HPX and LXK
= |nterplay with the overall application dynamics (top-down)

Top-down requirement implement constraints

= Performance information is the result of runtime analysis

Top-Down Development Approach

= Define performance abstraction (focusing on higher level)

= Specify observability requirements, and results semantics
= Provide application context for association

= What are the performance models, attributes, factors?

= Build into legacy languages and XPI
= APEX programming of PA infrastructure
= |Invokes HPX performance measurement API
= |ntegrate TAU capabilities for APEX realization
= |nstrumentation
legacy programming (MPI, OpenMP, OpenACC)
imperative API (XPI) for ParalleX programming
= TAU mapping for measurement contextualization
= Wrapper interposition to intercept HPX runtime layer

= Create introspection API for feedback

Legacy Application Migration and Interoperability

= Seamless migration, no modification needed for apps
= Retargeting OpenMP compiler to OpenX
= Adapting MPI to OpenX, need MPI system-level adjustment, and change of
configuration logic
= Two approaches for retargeting OpenMP via XPI:

= Through a POSIX compliant interface using XPI, e.g. pthreads on top of XPI
+: No (or minor) modification needed to OpenMP compiler
-: May only use a limited subset of OpenX features

= Rewrite OpenMP compiler and runtime to XPI
+: Explore OpenX advanced features
= OpenACCintegration with OpenX

= Adapt the OpenACC data movement mechanism to OpenX communication parcels
in the AGAS

= |ntegrate accelerator kernel execution of OpenACC with the OpenX execution
model

= Evaluation:
= Applications: Mini-apps with MPI+OpenMP/OpenACC
= Performance and productivity feedback to the OpenX implementation team

XPRESS Team

Sandia National Labs
(Lead Institution)

Indiana University

Louisiana State University

University of Houston

University of Oregon

Oak Ridge National Lab

University of North Carolina at Chapel
Hill/RENCI

Lawrence Berkeley National Lab

Ron Brightwell (Lead PI)
Mike Heroux (Application Lead)

Andrew Lumsdaine (PI)
Thomas Sterling (Chief Scientist)

Hartmut Kaiser (PI)

Barbara Chapman (Pl)

Allen Maloney (PI)

Chris Baker (PI)

Allan Porterfield (PI1)

Alice Koniges (PI)

LXK operating system
OpenX software architecture
Applications

Parallex Execution Model
OpenX software architecture
HPX-4 runtime system

XPI

HPX-4 runtime system

Application migration

Performance instrumentation (APEX)

Applications

XP1, HPX-4, APEX

Applications

Team Focus Areas

HPX-4
OpenX
LXK
XPI

APEX

Legacy Code Mitigation and
Transition to OpenX

Performance
Measurements

U

N

LSU ORNL
v
v
v
v v
v

SNL UH
v
v
v v
v

UNC UO LBL

v
v
v v
v
v v v

