XPRESS

eXascale PRogramming Environment and System Software

Preliminary Progress Report: Year 1
September 1, 2012 -- March 15, 2013

The XPRESS project is a collaborative effort across eight institutions that include laboratories and
universities. Overall leadership for the integrated project is provided by Sandia National Laboratories.
Other laboratories involved are Oak Ridge National Laboratory and Lawrence Berkeley National
Laboratory. University partners include Indiana University, Louisiana State University, the University of
Oregon, the University of North Carolina at Chapel Hill, and the University of Houston.

Contents

LCToT: | O T TP TP PPPTPPPPP 2
(0] Y=o 1 YT U R PPRSPRR 2
Lol L T or N 4 =1 (=T oY U SURUR 2
Schedule and MileStONES — YEAI L.....cciuiiiiiiie ettt ettt ettt e st e e st e e st e e e s be e e sabeeesabeeesareeas 3
Activities and FINAINGS — YEAT 1 ...coeiiiiiiiieiie e ettt e e e e e e ettt re e e e e ae e e e s e e aabbaaaseeeaeaeeeessnstasbasaeesaaaaanan 5
ParalleX EXECULION IMOEc..uiiiiiiiiiiie ettt ettt ettt e st e st e e s be e e sabee e sabeeesaneeas 5
H P Xo3 ettt ettt ettt ettt ettt ettt et e e bt e et e e bt e e bt e e e bt e e e b et e s b et e e bt e e e be e e e b e e e e bee e e be e e e bee e e beeeebeeeeabeeesraens 6
HP X4 <ttt ettt ettt ettt b e e bt e e bt e e s be e e e b et e s bt e e e bt e e e be e e e bt e e e bae e e bt e e e be e e s beeeebeeesabeeesraeas 9
LXK — LIGhtWEIZNT OS ...ttt e e e e e et e e e e e e e e e e eestab b b aaeeeaaaaeeseasasnstssaaasasaaseeeesansrnns 10
RIS ettt ettt ettt sttt b e e bt e e e bt e e e b et e e bb e e e b et e e ahbe e e b teeeanbeeeahteeeanbeeeaabeeeanreeeanreeenn 11
XPI — Intermediate Form for Program Parallel Representation..........cccccceveeeiiiiiiiiiiiieeeeee e, 11
INtrospection/CoOMPIlAtioNeeii ittt e e et e e e et e e e e e ab e e e e eeabaeeeeeansreeaeas 12
APEX Performance MeEaSUIEMENTciiiiieiiiieeiteeeiiee ettt e ettt e ettt e et eesbbeessabeeesabeeessbeeesabeeesareessnreeesanes 12
(== To Y T =4 =) f (o] o PSP PR PPPN 16
FiY o] o] [Tor=) 4 Lo K3 SUPR 16
Collaboration w/ Co-Design Centers (and POSt DOCS).....c.ueieeeiiiiieeeeciiiee ettt e et e e eereee e e evae e e e 16
e go) [=To Y T oY= =T 0 4 T=T) PSP PUPPPPPPNN 16
EAUCAtiON/OULIEaCH PrESENTATIONS. e eeeeeeeeeeeeeeeeeeeeeee ettt e e e e e e seeeeseseeeeeeeeeeeseresessseresssssssnnsnnnnns 17
PUBTICATIONS ..ttt ettt ettt ettt e s et e s bt e e s ab e e s bt e e s abe e e sabe e e sabeeeanbeeesabeeeaabeeesabeeenns 18

D Y =T R =TT o APPSR PPPPPPPPN 18

Goal

The goal of the XPRESS project is the research and development of OpenX, a complete software
architecture for Exascale computing. Four major R&D thrusts include:

1) an Exascale lightweight kernel operating system (LXK), based on the Kitten OS, to manage
billionway hardware parallelism, management of faults and power, management of global
virtual name space, and other features of future system architectures;

2) aruntime system (HPX-4), co-designed with LXK, which will be based on the ParalleX execution
model and will support dynamic resource management and task scheduling;

3) system interfaces for interoperability between the runtime system and both the OS and APIs;
and;

4) compilation strategies and systems to translate MPl and OpenMP legacy codes to a form that
can be run by OpenX with performance at least as good as a native code implementation.

Objective

XPRESS will define a system software architecture, OpenX, to represent the full functionality ultimately
anticipated for an Exascale computing system. While a paper specification, it will include important
interfaces between the programming system and underlying runtime and OS called XPl and between the
runtime system and operating system called RIOS. Compliance with these interface specifications will
facilitate different X-stack configurations comprising components of different design, possibly by
different development teams to accelerate progress towards advanced DOE systems. XPRESS will
implement a critical subset of OpenX software modules to integrate and test key functionality to
demonstrate and apply a working software system incorporating the defining innovative concepts upon
which XPRESS is defined. These will include the LXK lightweight kernel OS and the HPX-4 runtime system
interoperating through RIOS and driven by workloads via the XPl interface.

Technical Strategy

XPRESS is organized as a set of cooperative tasks to develop and test OpenX, a software architecture
based on the concept of delivering working scalable and efficient runtime environments for Exascale
computing. These major tasks include:

* OpenX software architecture — a conceptual framework for the co-design and interoperability of
proof-of-concept XPRESS software stack

* ParalleX execution model — guiding principles for co-design of components of the OpenX stack
with advances in locality management and task prioritization through introspection

¢ HPX runtime system — support of application dynamic adaptive resource management, task
scheduling, and introspective control policies

* LXK operating system — lightweight kernel operating system for order-constant scalability and
low/no noise to manage resources

* RIOS - arealm of Exascale system operation unique in the X-stack program. The full system
stack including the relationship between the new generation of lightweight kernel operating
systems and runtime system software

¢ XPl advanced programming model — intermediate form and low-level (readable) programming
interface reflecting the ParalleX model, providing a target for source-to-source high level parallel
language translation, and supporting early direct programming experimentation and
measurement

* Performance models & metrics — provide parameters and their mutual sensitivities to guide co-
design and quantify operational behavior

* Legacy application mitigation — ensuring seamless transition of legacy codes and programming
methods to the future generation of ParalleX-based Exascale systems

* Experiments and evaluation — critical to determining degree of effectiveness and likelihood of
ultimate success as well as guiding corrective design changes to achieve DOE objectives

e Applications — collaborations with Co-Design Centers and other mission critical codes

¢ Documentation — as well as reporting to DOE X-stack program management, to provide early
adopters with sufficient information to apply prototype programming and execution
environment

Schedule and Milestones — Year 1

The schedule for year 1 of the XPRESS project includes the following major milestones and tasks related
to the development of OpenX:

O Indicates that the task is progressing as planned and will be completed on time.

O Indicates that the task is progressing slower than planned, and there may be delays.

() Indicates that the task has not been started.
Component Year 1 Tasks Completion Status Progress Lead

Date Institution(s)

OpenX . Define architecture components 8/31/2013 O . Defined the components of the for SNL, IU
Software Exascale computing, including
Architecture ParalleX execution model, LXK

operating system, HPX-4 runtime
system, interface protocol,
compilation methods, debugging
tools, instrumentation, fault
tolerance, and power management

ParalleX . Refine specification - extended to 8/31/2013 O . Devised an initial simple model of U
Execution incorporate the semantics of locality and locality t distinguishes among pair-
Model priority policies wise associations with respect to their
relative locality

HPX-3 . Implement processes, object migration, 8/31/2013 . Released HPX V0.9.5 (APl and LSuU

policies, system introspection

Develop, maintain, document, and support
HPX-3 as a bootstrapping platform for newly
designed XPI API

performance counter improvements)
Released HPXC V0.2 (pthreads)

HPX-4 Runtime Development of the software architecture 8/31/2013 O Developed the top-level software U
System for each of the component subsystems architecture for the HPX-4 parcel
handler and synchronization
LXK Operating Port HPX-3 on Kitten 8/31/2013 O Completed an initial analysis of the SNL, LSU
System operating system (OS) requirements
for the HPX-3 runtime system
Re-enabled support in Kitten for
Mellanox InfiniBand (IB) network
devices
Added support for Qlogic IB cards to
allow Kitten to run on Cutter at
Indiana
Added support for using the Portals 4
network programming interface to
Kitten for intra-node inter-process
communication
Completed a preliminary analysis of
the functionality needed to support
network-based task spawning through
Portals
RIOS Develop first draft protocol of the RIOS 8/31/2013 O Explored the parcel interface which SNL, IU
interface supports message-driven computation
to be conducted across the system
and between nodes
An initial draft of this interface will be
available by the end of year one
XPI Develop first specification 8/31/2013 O Developed first full specification of U
the XPI programming interface
Compilation/ Design and prototype HPX-LXK interface for 8/31/2013 O Designed how the information flow UNC/RENCI
Introspection performance information between the initial performance tools
Design methodology and development will occur and have
approach for performance introspection in Started the implementation to merge
the HPX runtime the tools and performance models.
Help design XPI interface to allow for Improved the collection of
maximal system performance and information about dynamic system
parallelization information transfer performance
Re-implemented the prototype
performance daemon to reduce the
overhead by 10-20x
APEX Design methodology and development 8/31/2013 O ParalleX model studied, requirements uo
Performance approach for APEX performance for APEX measurement informally
Measurement instrumentation and measurement captured, APEX prototype
integration with OS and runtime layers implemented
Develop initial version of measurement Awaiting XPI Draft 1
wrapper libraries for XPI HPX-3 instrumented with APEX
Implement performance observation measurement
support in HPX-3 and evaluate Monitoring HPX-4 design to provide
Identify HPX-4 performance requirements APEX support when implemented
based on HPX-3 observations
Legacy Baseline runtime on HPX-3 on kitten 8/31/2013 O Defined a strategy for adapting legacy UH
Migration Explore baseline support to port MPI and OpenMP programming

OpenMP/OpenACC codes to XPI
Evaluate the modifications required to
support Open MPI to OpenX

models to HPX based on the OpenUH
OpenMP runtime and the OpenMPI
MPI library

Started development of the OpenACC
compiler, which will help the
migration of current OpenACC code in
the DOE lab to use within HPX
runtime

A prototype implementation of data-

driven OpenMP execution model has
also been completed

Table 1: Year 1 Schedule and milestones.

Activities and Findings — Year 1

The XPRESS research and development activities are helping to define the components of the OpenX
software architecture for Exascale computing. Major activities for year 1 include refining the ParalleX
execution model, developing the HPX-4 runtime system, LXK operating system, and XPI and RIOS
interface protocols, measuring performance, and migrating legacy codes.

ParalleX Execution Model

The ParalleX execution model provides a conceptual framework for the organization of computational
elements and their interrelationships. Like other execution models, it defines the guiding principles that
govern the form and operation of actions and the data upon which they are performed. In particular,
ParalleX unifies a diversity of semantics of parallelism to achieve greater scalability in the era of
multicore. It incorporates strategies to manage the uncertainty of asynchrony for high efficiency. It
permits the use of runtime software systems to remove the burden of scheduling and resource
management from the programmer for greater productivity and performance portability. ParalleX
provides a crosscutting abstraction to guide the co-design of the many system layers from programming
models to hardware architecture and all of the system software layers in between. It governs their
interoperability and mutual support in achieving the desired emergent behavioral properties.

The foundational work in the derivation of the initial ParalleX execution model was conducted under
funded research previously sponsored by DOD and NSF. It established a model with basic elements of
dynamic multi-threading, parcel message-driven computation, active global address space naming, and
local control object synchronization. This basic model has been tested through the experimental
development of early runtime system software and its use for new highly scalable applications. The
results are promising, showing superior performance in some cases with respect to conventional
practices.

ParalleX at the beginning of the XPRESS project had demonstrated the merit of its basic and
distinguishing concepts. But it also revealed the need for additional capabilities to permit more
intelligent management of resources with respect to the dynamic tasks. Under the XPRESS project, the
ParalleX execution model is to be extended to incorporate the semantics of locality and priority policies.
The objective of locality management is to balance the need to distribute data and tasks to achieve the
highest possible parallel processing for scalability with the need to co-locate data that are used together
to minimize latency and overhead for high efficiency. In the current reporting period, an initial simple
model of locality has been devised that distinguishes among pair-wise associations with respect to their
relative locality. The three classes of pairs are data to data, task to task, and data to task. The types of
localities are tightly bound, weakly bound, not bound, and forced separation. This establishes a relative
push-pull relationship determining preferential placement of new data and actions or with availability of
storage or thread processing resources. This characterization can be bound to placement of the many
existing objects to yield an objective function for which optimization will determine ultimate allocation
of new objects to distributed resource placement.

HPX-3

LSU’s work focuses on the conceptual and design phase of implementing ParalleX concepts in HPX.
ParalleX concepts, including ParalleX processes, heterogeneous system support, and distributed AGAS
implementation require extensive research to design and implement. ParalleX (PX) parallel processes
are special entities that enable forming a hierarchical namespace in the ParalleX execution model. Each
PX-process manages a part of the namespace; it participates in address resolution for all its children (any
ParalleX first class objects, such as other processes, threads, LCOs, etc.) The objective of PX-processes is
to enable the coherent management of computation across localities. Semantically, PX-processes can
be viewed as special data structures that hold information pertinent to a task or hold codes/instructions
that need to be acted upon along with data. Processes are hierarchical, with the main process at the
root of that hierarchy and their children residing at lower levels (see Figure 1). They can protect data
from being accessed by any other process. Each PX-process may span multiple localities, i.e. the data
managed by a process may be distributed. The set of localities associated with a PX-process may change
at runtime as part of the data a PX-process manages may be migrated to other localities.

Main Process

Introspection

L1 Counters LN Counters

Active threads Parcel queue

length

DTLB misses

Refinement Level 1

Refinement Level 2

Locality 1 Locality 2 Locality 3 Locality N

Figure 1: PX-processes rely on distributed data structures, are able to span multiple localities (physical nodes),
and this set of localities could be dynamic. Each PX-process supports certain key attributes such as task
scheduling policies, access rights interfaces to kernel handlers. Processes are fundamental blocks all
tasks/services are built upon. To support these properties, PX-processes maintain members such as thread
constructors, synchronization constructs, thread scheduling policies, performance counters, data containers, and
others. This figure depicts an example for a set of PX-processes for a hypothetical application, demonstrating
their hierarchical and distributed nature. Any of the PX-processes spans a different set of localities and
encapsulates a different set of functionalities (code) and related data structures. They expose an individual set
of methods representing their encapsulated functionality.

One of the great challenges of parallel programming in conventional systems such as MPl is the
semantic gap caused by local virtual memory boundaries. Traditional clusters often consist of multiple

interconnected SMP machines that have no virtual memory infrastructure that spans the entire system.
Partitioned Global Address Space (PGAS) systems (such as Co-Array Fortran, Chapel, or UPC) address this
semantic gap by implementing a global address space that encompasses multiple compute nodes
networked by mainstream interconnects such as Ethernet or Infiniband. PGAS statically partitions
logical regions to create this global address space. This model eases parallel programming and is
sufficient only for applications that are not highly dynamic and systems that do not add or remove
hardware resources at runtime. Moreover, while systems based on PGAS provide support for irregular
data structures in general, the Single Program Multiple Data (SPMD) implementations of these systems
do not support those. However, global address space solutions such as PGAS are insufficient for the
class of applications that are investigated by this project. Parallel applications of highly dynamic nature
require equally dynamic systems to manage their resources and ensure optimal parallelization through
adaptive load balancing. The Active Global Address Space, a core component of the ParalleX execution
model, provides the crucial functionality in support of such a system. AGAS implements a global naming
service that permits tracking of physical locations of all first class objects in a parallel computation by
providing an efficient translation of object names to resources that host them. As a consequence, AGAS
allows these objects to migrate to remote physical resources and supports the addition and removal of
localities at runtime.

As a result of the work, LSU identified the following design requirements for AGAS. The development of
migration requires AGAS to fulfill certain requirements and semantic guarantees. The primary criteria
regard the scalability and correctness of the AGAS services. They are summarized below:

* (Correctness

AGAS must make certain guarantees about the accuracy of its address resolution services.
Correctness does not mean that AGAS must always give the correct answer; it merely means
that the circumstances in which AGAS may answer incorrectly are well defined. There are three
fundamental correctness requirements which an AGAS implementation must meet to enable
migration: 1) the Parcel Delivery Guarantee, 2) the Reference Validity Guarantee, and 3)
Correctness While Determining Proximity.

e Distributed AGAS Services

Service of address resolution becomes a system bottleneck when a single AGAS server must
handle potentially hundreds of thousands of concurrent address resolution requests. While a
single AGAS server eases the enforcement of the aforementioned correctness guarantees,
experience shows it becomes an unacceptable overhead in a system with hundreds of
thousands of localities (not uncommon in present-day systems). The solution to this bottleneck
is for the AGAS server to be distributed across multiple localities.

The goal is to create such a distributed AGAS service in the context of XPRESS. This AGAS service
will be closely related to PX-processes. Each PX-process spans part of the namespace, thus
allowing it to resolve all managed references. For this reason each instance of a PX-process is a
part of the AGAS service and is responsible for resolving the names of all of its children.

LSU also maintains, improves, documents, and supports HPX as the initial platform for XPRESS, and
specifically, HPX-3 as a bootstrapping platform for the newly designed XPI API. Legacy work targets MPI

and OpenMP interfaces for the interfaces to the XLK. Two major releases to HPX occurred in the
reporting period: HPX V0.9.5 and HPXC VO0.2.

* HPXV0.9.5

LSU released HPX V0.9.5 under the Boost Software License V1
(http://www.boost.org/users/license.html), available from Github (https://github.com/STEIIAR-
GROUP/hpx/). The main goals for this release have been a) API consolidation, b) performance
improvements, and c) overall usability improvements.

The APIs have been aligned with the C++11 Standard, which significantly improves its usability
and reduces any learning curve which might have existed before. A strict syntactic and semantic
alignment of the HPX APIs with what is mandated by the C++11 Standard and with additional
discussion papers which will likely be accepted into the next C++ Standard by 2015 puts HPX in a
very strong position in terms of usability, simplicity, and maintainability. This also simplifies the
task of documenting those APIs as many resources are already available describing the use of
the standard C++11 facilities. Many of the remaining APl functions have been adapted for
overall consistency.

500,000 Tasks
Thousands of Threads Executed Per Second
5 1600.00
$1400.00
#1200.00 —=—0 psec
©-1000.00 —— 1 usec
?g 800.00 —— 10 psec
< 600.00 —&— 100 psec
2 400.00 —— 1000 psec
§ 200.00
= 0 5 10 15 20
number of cores

Figure 2: Number of executed HPX threads over the number of cores utilized in a SMP system for different
amounts of (artificial) workload

The API now provides asynchronous functions wherever the execution of the API function could
result in remote operations or could take more than ~100us to execute. Using those API
functions has the potential to improve the overall application performance by allowing overlap
computation with communication and enables fine grain parallelism and synchronization.

This work resulted in greatly improved performance of the threading and parcel transport
subsystem layers of HPX. The (amortized) overheads for creating, scheduling, executing, and
deleting one HPX thread (with no workload) were reduced to 700ns, which is equivalent to
executing ~1.4 million HPX threads per seconds (see Figure 2).

The performance counter framework, which is a special subsystem in HPX, has been improved
and refined, and underwent a major redesign aimed at higher performance and greater utility.
LSU implemented more than 50 new performance counters which expose many of the
important HPX system characteristics, such as queue lengths, idle rates, wait times, and amount
of data communicated over the network. Many of those changes were inspired by discussions
with other groups in the project, mainly related to APEX and RCR-Blackboard, two tools
developed by University of Oregon and RENCI for the XPRESS performance subsystem.

HPX documentation has been considerably extended and improved to include a user manual,
reference documentation, and many examples. It is available here:
http://stellar.cct.Isu.edu/files/hpx_master/docs/html/index.html.

HPX underwent important changes and optimizations in its parcel layer. The overall
performance (bandwidth) of the existing TCP/IP based parcel port was improved. A new parcel
port enabling shared memory-based parcel delivery between localities running on the same
SMP node was implemented. The shared memory parcel port improves the performance of
sending parcels significantly. First, measurements indicate improvements in the range of 50%
better bandwidth compared to the existing (now optimized) parcel port based on standard
TCP/IP sockets. Work on implementing a parcel port that directly binds to the RDMA InfiniBand
interface is started. This work is not complete at the time of this writing.

* HPXCVO0.2: A pthreads (compilation) compatibility later

HPX provides cutting-edge facilities for parallel programming including a high-performance user
thread task manager and an APl which supports distributed futures, data flows, and remote
objects. Fully taking advantage of the advanced API often requires significant reworking of an
existing code. However, by providing a more familiar alternative interface, it should be possible
for HPX to facilitate increased concurrency for legacy applications through its support for
massive numbers of threads.

Toward that end, LSU has created HPXC, a lightweight interface to HPX with C-language bindings
that resembles the pthread library. This effort does not intend to replicate the entire set of
pthread functions, instead focusing on the most popular and significant pthread functions.
Transforming a code to use HPXC is straightforward, requiring only trivial edits or inclusion of a
header file:

#include <pthread_to_hpxc.h>

This header redefines all pthread symbols to their HPXC equivalents. Error! Reference source
not found. shows a list of pthread functions supported by HPXC together with notes on
important considerations for codes wishing to switch from pthreads to HPXC.

HPX-4

The HPX-4 runtime system will be a complete rewrite of HPX to provide a new generation of dynamic
adaptive execution capable of serving POSIX-based HPC systems as well as the new LXK lightweight
kernel Exascale operating system. HPX-4 has four principal components: thread manager, parcel
handler, local control object synchronization, and global address space server. LSU is responsible for

delivering the new thread manager. U is contributing the parcel handler and synchronization. The first
task towards the realization of HPX-4 is the development of the software architecture for each of the
component subsystems. IU has developed the top-level software architecture for the HPX-4 parcel
handler and synchronization. It comprises interfaces, queue structures, runtime services (RTS), and the
action dispatch function. The parcel manager interfaces with the system area networks, the operating
system, the thread manager and global address space server, and the main memory system including
the DMA controller. The RTS functions include: a) parcel receive, b) parcel dispatch, c) parcel transmit,
d) thread update, e) thread create, f) process create, g) block data movement, and h) AMO execute.
There are also RTS functions for LCO event and LCO create in support of global synchronization. A
report has been developed documenting this software architecture for HPX-4.

Memory DMA
Controller

Block Data
Movement RTS

_ | AMO Execute
RTS

] LCO Frob 7
RTS Parcel Parcel
Dispatch |- Receive &
LCO Create RTS) Parse
RTS RTS N
AGAS i -
RTS Parcel C
Assemble
& Transmit
RTS
y ¥ y .
Thread Update Create Thread Process
RTS RTS RTe [OS Interface]
\ Y J \ Y JL Y) ‘—'—,
Remote Thread Execute Thread Manager 0S Service Calls
Thread
Create

Figure 3: HPX-4 Parcel Handler

LXK - Lightweight OS

SNL completed an initial analysis of the operating system (OS) requirements for the HPX-3 runtime
system. This analysis revealed several capabilities that were not available in the Kitten lightweight
kernel, including dynamic library support through the dlopen() interface, handling of basic standard
I/O system calls, and intra-node inter-process communication facilities. These capabilities are now
under development and we expect to complete them in time to meet the deliverable of running HPX-3
on Kitten at the end of the first year. During this time, SNL also re-enabled support in Kitten for
Mellanox InfiniBand (IB) network devices. Previous versions of the Open Fabrics device driver stack
needed for IB worked with Kitten, and changes were needed to get the latest driver code working.
Support was added for Qlogic IB cards to allow Kitten to run on Cutter at Indiana. In order to enable
scalable process launch, SNL is integrating support for the Process Management Interface (PMI) into
Kitten. PMlI is a standard interface that many existing libraries, including MPICH and OpenMPI, can use

to start remote processes on nodes within a cluster. SNL is integrating into Kitten the functionality
needed by the Hydra process launch system that uses PMI and expect to complete that work within year
one. SNL has also added support for using the Portals 4 network programming interface to Kitten for
intra-node inter-process communication. SNL is developing an implementation of the Parcels
communication layer on top of Portals 4 and have added support to Kitten for ensuring message
progress for transfers between separate address spaces on the same node. SNL has also done a
preliminary analysis of the functionality needed to support network-based task spawning through
Portals.

RIOS

XPRESS is exploring a realm of Exascale system operation unique in the X-stack program: the full system
stack including the relationship between the new generation of lightweight kernel operating systems
and runtime system software. The “Runtime Interface to Operating System” or “RIOS” is a major
component of the overall OpenX Exascale software system architecture. It codifies the interrelationships
between the runtime and OS, the data exchange and events that must be communicated between the
two layers, and the requirements of the protocol that must ultimately be specified. Towards this end, IU
has focused on a key aspect of the RIOS: the parcel interface, which supports message-driven
computation to be conducted across the system and between nodes. Parcels will usually come from
other nodes but may also be used as a protocol of communications between the OS and the runtime
system even on the same node. This is helping to define the emerging protocol.

Development of the first draft of the RIOS interface is in progress. Several project meetings at Sandia
have been conducted to analyze the various resource and management functionality required to
support dynamic adaptive runtime systems such as HPX. An initial draft of this interface will be available
by the end of year one.

XPI - Intermediate Form for Program Parallel Representation

XPI (eXtreme scale Programming Interface) is an intermediate form of abstraction for advanced parallel
execution. It is a syntactical representation of the ParalleX execution model and a stable interface layer
to the HPX runtime system. It serves as a target for source-to-source compilation from high-level
programming languages and compilers. It also provides a low-level, user-readable syntax for direct
programming. As such, it provides an early formalism for application-driven experimentation and
parallel algorithm development. It will also make possible a common framework to unify access to high
level programming models like DSLs and co-design applications that are captured in this form for the X-
stack Program and other related initiatives.

The XPRESS XPI task has developed its first full (and mostly complete) specification of the XPI
programming interface. It is based on the library model of implementation with bindings to the C
programming language. Categories of defined instructions include: 1) miscellaneous, 2) threads, 3)
parcels, 4) processes, and 5) AGAS. The syntax of commands exhibits an appearance very similar to that
used for MPI. The data types used for parcel data payload transfer are derived from those of MPI
including compound data types. Of course the semantics are markedly different. While the model is
intrinsically dynamic, options are being included that will permit programmers to make static many of
the resource allocations and task assignments. A report of the current version of the XPI specification
has been written and delivered.

Introspection/Compilation

LSU, UO, and UNC/RENCI have designed how the information flow between the initial performance tools
will occur and have started the implementation to merge the tools and performance models. Several
phases for the integration of information between the tools were identified and work has begun.

UNC has focused on improving the collection of information about dynamic system performance. The
performance collection daemon has been ported to the Intel SandyBridge architecture and expanded to
take advantage of the new performance counters (particularly the RAPL power interface). UNC has re-
implemented the prototype performance daemon to reduce the overhead by 10-20x. This will allow the
daemon to be run in production environments.

APEX Performance Measurement

The XPRESS team has made solid progress with respect to design of the APEX performance
measurement infrastructure, performance measurement of the HPX-3 runtime system, and beginning
the transition from first-person performance reporting to third-person performance observation. The
XPRESS team has implemented an APEX prototype using TAU" as the core measurement infrastructure.
The APEX instrumentation interface provides access to TAU performance timers and counters. The APEX
prototype also works with TAU event-based sampling, providing performance observation of the HPX-3
runtime and application code without instrumentation, which will guide the placement of additional
APEX timers in the HPX-3 runtime.

HPX-3 previously provided support for various performance counters that could be periodically sampled
and/or reported at program termination. Some examples of these counters include the runtime thread
gueue length, various thread counts, and the thread idle rate. As these counters were output only to the
user terminal, the counters were not easily machine-readable, nor in a form that could leverage existing
analysis tools. HPX-3 was modified so that when the counters were observed they were also recorded by
the APEX prototype, and subsequently stored in performance profiles at program termination. This
initial implementation will be improved, so that whenever these monitored counters are modified, they
will be automatically reported to the APEX measurement library, rather than only when requested.
Supporting the HPX-3 counters required a modification to TAU to create a new type of counter, a
context user event. Sample output from a group of HPX-3 counters collected during a run of GTCX is
shown in Figure 4. In this example, the HPX-3 counters were observed every four seconds during the
run, resulting in 277 total samples. The measurement library also generates simple statistics (maximum,
minimum, mean, and variance).

! http://tau.uoregon.edu

Name /. Total NumSampl... MaxValue MinValue MeanValue Std. Dev.
¥ hpx-thread-scheduler-loop
¥ hpx-user-level-thread

Jthreadqueue{locality#0 /total}/length 32.849 277 2 0 0.119 0.466
Jthreadqueue{locality#0 /worker-thread#0}/length 0 277 0 0 0 0
Jthreadqueue{locality#0 /worker-thread#10}/length 11.542 277 1 0 0.042 0.2
/threadqueueflocality#0 /worker-thread#11}/length 0 277 0 0 0 0
Jthreadqueue{locality#0 /worker-thread#1}/length 9.552 277 1 0 0.034 0.182
/threadqueueflocality#0 /worker-thread#2}/length 11.542 277 1 0 0.042 0.2
Jthreadqueue{locality#0 /worker-thread#3}/length 13.19 277 1 0 0.048 0.213
Jthreadqueue{locality#0 /worker-thread#4}/length 0 277 0 0 0 0
Jthreadqueue{locality#0 /worker-thread#5}/length 0 277 0 0 0 0
Jthreadqueue{locality#0 /worker-thread#6}/length 0 277 0 0 0 0
Jthreadqueue{locality#0 /worker-thread#7}/length 0 277 0 0 0 0
Jthreadqueue{locality#0 /worker-thread#8}/length 0 277 0 0 0 0
Jthreadqueue{locality#0 /worker-thread#9}/length 11.542 277 1 0 0.042 0.2
Jthreads{locality#0 /total}/count/instantaneous /active 0 277 0 0 0 0
/threads{locality#0 /total}/idle-rate 2,266,942.801 277 8,588 8,136 8,183.909 99.684
/threads{locality#0 /total}/wait-time /staged 17,929,588.855 277 65,784 60,443 64,727.758 1,195.862
Jthreads{locality#0 /total}/wait-time /pending 22,553,536.173 277 82,858 76,620 81,420.708 1,685.033
Jthreads{locality#0 /worker-thread#0}/idle-rate 2,448,342.584 277 9,911 8,329 8,838.782 313.074
Jthreads{locality#0 /worker-thread#0}/count/instantaneous/active 3,853.91 277 27 4 13.913 5.554
Jthreads{locality#0 /worker-thread#0}/wait-time/staged 18,169,174.148 277 68,412 59,223 65,592.686 2,365.367
Jthreads{locality#0 /worker-thread#0}/wait-time/pending 23,568,318.858 277 86,611 78,137 85,084.184 2,264.816
Jthreads{locality#0 /worker-thread#10}/idle-rate 2,141,334.765 277 9,686 7,250 7,730.45 529.351
Jthreads{locality#0 /worker-thread#10}/count/instantaneous/activ 832.36 277 16 0 3.005 5.388
/threads{locality#0 /worker-thread#10}/wait-time /staged 18,806,211.921 277 69,452 65,076 67,892.462 981.091
/threads{locality#0 /worker-thread#10}/wait-time/pending 24,296,312.325 277 90,486 79,229 87,712.319 2,913.731
/threads{locality#0 /worker-thread#11}/idle-rate 2,242,837.634 277 8,472 6,877 8,096.887 328.238
Jthreads{locality#0/worker-thread#11}/count/instantaneous/activ 786.503 277 15 0 2.839 5.163
/threads{locality#0 /worker-thread#11}/wait-time /staged 12,310,150.923 277 47,246 43,301 44,440.978 798.887
/threads{locality#0 /worker-thread#11}/wait-time/pending 15,605,709.556 277 58,019 52,751 56,338.302 1,502.421

Figure 4: HPX-3 performance counters captured by APEX. The counters are saved in a parallel profile data file,
and visualized with ParaProf, the profile visualization and analysis tool.

The HPX-3 runtime thread manager was instrumented with APEX timers. This instrumentation
provide insight into how much time is spent in runtime thread scheduling as opposed to actual
application processing. An example of a profile collected with these timers is shown in Figure 5.
This example was run with 48 total HPX threads on four nodes of ACISS?, the computational
cluster at the University of Oregon. In addition to the 12 OS threads that are directly involved in
application execution progress, HPX-3 has eight additional OS threads. Instrumenting HPX-3 in
this way will help HPX developers in reducing the runtime thread scheduling overhead.

Figure 6 shows a profile of the same application, but with sampling enabled to gain insight into where

the application and runtime are spending the most time in execution. Figure 7 shows a trace timeline of

the thread scheduler in HPX-3 when executing the GTCX application.

? http://aciss.uoregon.edu

Metric: TIME
Value: Exclusive

node 0, thread 19
node 0, thread 20

Std. Dev. | =] I =

Mean | | ey [—

Max | | e [] o |

Min [I i

node 0, thread 0 [| | |

node 0, thread 1 HPX user level I) |
node 0, thread 2 [] | o
node 0, thread 3 [] | 8
node 0, thread 4 «) [J [
node 0, thread 5 HPX “main [] | E
node 0, thread 6 [] | =
node 0, thread 7 e | .
node 0, thread 8 [| [| ﬁ
node 0, thread 9 N H 4 o
node 0, thread 10 [| = T
node 0, thread 11 e | H | 3
de 0, thread 12 [“ ” c
noge o, rea GTCX on 1 node of | HPX “helper | =
node 0, thread 13 [| 0S thread - +
node 0, thread 14 ACISS cluster at UQ] I reads E I x
node 0, thread 15 [T

%

node 0, thread 16+ 20 / 80 O threads e | |

node 0, thread 17 * 12 cores (user) 01 |

node 0, thread 18]l] |

[I

I I

Figure 5: APEX profile measurement of HPX-3 runtime thread scheduler, as visualized in ParaProf. Only the first
of four processes is shown. In addition to the twelve worker threads, HPX-3 also has a main thread (blue) and
seven helper OS threads (green). The twelve worker threads split their time between the thread scheduler loop
(purplered) and user level work (redpurple).

e O 0 TAU: ParaProf: node 0, thread 16 - /Users/khuck/data/hpx/gtcl-samples.ppk

Metric: TIME
Value: Exclusive
Units: seconds

71.029 [l [SAMPLE] poisson_ [{/home3 /khuck/src/hpx/hpx/examples/gtcx/gtex_hpx/server/p

25.087 [[SAMPLE] boost::lockfree::detail::tagged_ptr<boost::lockfree::detail::fifo<hpx::util::tu

24.564 [(SAMPLE] std::vector<hpx::threads::policies::thread_queue <false>*, std::allocator<t

[[SAMPLE] boost::detail::atomic::atomic_x86_64 <unsigned long>::load(boost::memor

. [[SAMPLE] pushi_ [{/home3 /khuck/src/hpx/hpx/examples/gtcx/gtex_hpx/server/pus

16.679 [[SAMPLE] pushi_ [{/home3 /khuck/src/hpx/hpx/examples/gtcx/gtcx_hpx/server/pus

15.725 [SAMPLE] hpx::threads::policies::local_priority_queue_scheduler::wait_or_add_new(un

15.48 [l (SAMPLE] hpx::threads::policies::local_priority_queue_scheduler::get_next_thread(uns
15.279 [SAMPLE] UNRESOLVED EXEC ADDR 0x7ff7656aa659

14.304 | [SAMPLE] pushi_ [{/home3 /khuck/src/hpx/hpx/examples/gtcx/gtex_hpx/server/pus

14.248 = [SAMPLE] hpx::threads::policies::local_priority_queue_scheduler::get_next_thread(uns
12.624 [[SAMPLE] boost::detail::atomic::platform_atomic<boost::lockfree::detail::tagged_ptr<
12.036 [SAMPLE] poisson_ [{/home3 /khuck/src/hpx/hpx/examples/gtcx/gtcx_hpx/server/p

[SAMPLE] pushi_ [{/home3 /khuck/src/hpx/hpx/examples/gtcx/gtex_hpx/server/pus
[SAMPLE] smooth_ [{/home3 /khuck/src/hpx/hpx/examples/gtcx/gtex_hpx/server/sr
[SAMPLE] boost::detail::atomic::fence_after_load(boost::memory_order) [{/home3 /khi
[SAMPLE] boost::detail::atomic::atomic_x86_64 <long>::load(boost::memory_order) ¢
[SAMPLE] UNRESOLVED EXEC ADDR 0x7ff7656a94b3

[SAMPLE] boost::unique_lock <boost::mutex>::owns_lock() const [{/usr/local/package
[SAMPLE] boost::unique_lock <boost::mutex>::owns_lock() const [{/usr/local/package
[SAMPLE] chargei_ [{/home3 /khuck/src/hpx/hpx/examples/gtcx/gtex_hpx/server/ck
[SAMPLE] boost::detail::atomic::platform_atomic<boost::lockfree::detail::tagged_ptr<
[SAMPLE] chargei_ [{/home3 /khuck/src/hpx/hpx/examples/gtcx/gtex_hpx/server/ck

Y
Yt
w
~
bt

I

Figure 6: APEX profile measurement of HPX-3 application GTCX, using sampling. The total runtime of the
application was 1132 seconds when executed with 12 HPX-3 threads on one node. Most sampled time is spent in

application code (poisson, pushi, smooth), but there is also significant time spent in overhead (HPX-3 code,
library calls, other unresolved addresses).

8 00

Timeline : gtc12-detailed-valid.slog2 <Thread View>

[alv

e m e[<[> a]a[s][a]n

sus 20

Lowest / Max. De
0/8

Zoom Level Global Min Time View Init Time Zoom Focus Time View Final Time Global Max Time Time Per Pixel
8 0.00 227.1358420238 228.0523553889 228.9688684027 479.317987 0.0020782612

e

| Cumulati....

pnT:
|

a
v

il SLOG-2
v i@mo

W NV B W N = O

FEEEPEPEEEEERPEE
-
N =~ O

rle
—
Sow

H1s
Y16
Y17
q18

S19
520

HPX main process thread

HPX “helper”
OS threads

TimeLines -

@ NodelD
@ ThreadIl

227.20 227.40 227.60 227.80 228.00 228.20 228.40 228.60

228.80

Time (seconds)

*how

Row Count|

23.0

‘ﬂ

=

=21

-16

—6

=

Fit All Row

Figure 7: Timeline view of HPX-3 application in Jumpshot, a trace visualization tool. The twelve worker threads
are clearly visible (in blue and orange), and alternate their time between the thread scheduler (orange) and

work task

s (blue).

The APEX prototype has been developed with the HPX-3 build process in mind, and is designed to
integrate seamlessly into the HPX-3 build. If the APEX variables are not defined, HPX-3 is configured and
compiled as normal. If the APEX variables are defined with a reference to the local APEX installation, the

HPX-3 bu

ild system will enable APEX support.

One of the key aspects of the APEX third-person observation design is to incorporate the full system
context in any performance observation. With that in mind, the XPRESS team has also been working to
integrate the RCRToolkit library into the APEX measurement infrastructure. RCRToolkit exposes holistic
hardware and system observations that are not available in the currently executing process space
through a shared memory region, called the RCRBlackboard. The APEX prototype has integrated with
the RCRBlackboard as a client application, so that non-core hardware measurements such as power and
energy can be taken. As the current implementation of RCRToolkit has specific hardware and execution
permission requirements, the XPRESS team has established common development systems at both
RENCI and LSU that meet the requirements. On the RENCI development system with Intel Sandybridge
architecture, APEX has successfully collected non-core hardware measurements such as power and
energy from the RCRBlackboard, which is provided by the RCRDaemon running on that system.

While the prototype implementation of APEX provides insight into HPX applications, there are some
drawbacks to the prototype approach. The most significant of these is that the performance data is not
yet modeled in the ParalleX view of the world. For example, the performance model currently used in
APEX uses measurement dimensions that include only the currently executing process and operating
system thread, with no explicit support for capturing the HPX-3 runtime thread. However, until the
ParalleX performance model is fully captured in APEX there is still valuable insight into the application by
implementing the prototype in existing tools, running on existing systems, and mapping back to the
ParalleX model.

Legacy Migration

UH, LSU, and IU have defined a strategy for adapting legacy MPI and OpenMP programming models to
HPX based on the OpenUH OpenMP runtime and the OpenMPI MPI library. The strategy includes three
major steps: 1) retarget OpenMP runtime and MPI to HPX runtime, which will enable seamless migration
of MPI/OpenMP codes to use certain features of HPX; 2) add a subset of HPX and XPI to the
OpenMP/MPI runtime, as well as appropriate language extensions such that legacy MPI/OpenMP
application could use those features mixing with OpenMP/MPI; 3) introduce the full XPI to the
OpenMP/MPI runtime and appropriate language extensions to fully exploring the HPX features.

UH has started development of the OpenACC compiler, which will help the migration of current
OpenACC code in the DOE lab to use within HPX runtime. A prototype implementation of data-driven
OpenMP execution model has also been completed, which will be leveraged with HPX “future” features
when integrating the OpenMP runtime with HPX for the step-1 migration goals. Problems envisioned so
far are the interoperability issues when integrating the multiple runtime (MPIl, OpenMP and HPX), as
well as the approach to migrating legacy applications.

Applications

This activity will not start until the second year of the project.

Collaboration w/ Co-Design Centers (and Post Docs)
Thomas Sterling, Chief Scientist of the XPRESS project, is the primary point of contact with the Co-Design
Centers regarding applications. He has contacted the following centers to initiate discussion and
collaboration:

¢ John Bell, LBNL, Combustion Exascale Co-Design Center

* Jim Belak, LLNL, Exascale Co-Design Center for Materials in Extreme Environments

* Paul Fischer, ANL, Center for Exascale Simulation of Advanced Reactors (CESAR)

Ron Brightwell, Lead Pl of the XPRESS project, has contributed to the “Collaboration and Coordination of
the X-Stack Projects with the Co-Design Centers” document.

Project Management

The XPRESS project is led by Ron Brightwell at Sandia National Laboratories. He serves as the
coordinating Pl. Thomas Sterling, Indiana University, assumes the roles of Chief Scientist and Co-Design
Chair for the team. Rebecca Schmitt, Indiana University, is the Project Manager. An Executive

Committee, comprised of lead Pls from collaborating institutions, the Chief Scientist, and Project
Manager, provide oversight and execution of the project.

Internal communication mechanisms include biweekly teleconferences and in-person meetings. All
team members participate in biweekly teleconferences to discuss technical and administrative updates.
Several in-person meetings have also helped facilitate technical progress. Listed below is a timeline of
in-person meetings:

* 8/17/2013: Kick-off project meeting at Sandia National Laboratories
* 11/13/2013: Project meeting at Supercomputing 2013

* 1/23/2013: Technical meeting at UH to discuss legacy migration

* 2/6/2013: Technical meeting at LSU to discuss system performance
* 3/7/2013: Pl meeting at UNC/RENCI to discuss X-Stack preparations

Documents and code are shared via:

* Email reflectors — xpress@crest.iu.edu, xpress-exec@crest.iu.edu

* Subversion repository - https://svn.osl.iu.edu/rep/xpress/

* Wiki - https://www.crest.iu.edu/projects/xpress/

* XPRESS project website - http://xstack.sandia.gov/xpress/index.html

Education/Outreach/Presentations

Members of the XPRESS team frequently attend and present at meetings, workshops, and conferences
related to Exascale computing:

* ExMatEX All-Hands Meeting, 3/12/13, Bernalillo, NM (Sandia)

* Exascale Ecosystem Coordination Meeting, 2/11-13/13, Livermore, CA (Sandia)
* Exascale Research Conference, 10/1-3/12, Arlington, VA (Sandia)

* X-Stack Kickoff Meeting, 9/17-20/12, Portland, OR (Sandia)

* Rice University, 7/27/12, Houston, TX (Sandia)

* Georgia Institute of Technology, 7/31/12, Atlanta, GA (Sandia)

Presentations directly related to XPRESS and Exascale efforts include:

* Lumsdaine, Andrew. “Avalanche: A Flow-Graph Framework for Simplifying the Use of Active
Message,” Productive Programming Models for Exascale Workshop, 8/2012, Portland, OR.
Slides at rlhttp://xsci.pnnl.gov/ppme/pdf/Willcock pres.pdf

* Sterling, Thomas. “Towards Extreme Scale Computing in the Current Coming Decade,”
ScalPerf’12, 9/21/12, Bertinoro, Italy.

* Sterling, Thomas. “XPI & RIOS Interfaces to the HPX Runtime System,” DOE Exascale Research
Conference, 10/1/2012, Arlington, VA

¢ Sterling, Thomas. “The HPX Runtime System for ParalleX Processing,” DOE Exascale Research
Conference, 10/1/2012, Arlington, VA

¢ Sterling, Thomas. “XPRESS: Exascale Programming Environment and System Software,” DOE
Exascale Ecosystem Coordination Meeting, 10/9-12/12, Oakland, CA

* Sterling, Thomas. “Modeling Execution Models- Top-Down & Bottom-Up,” DOE Exascale
Ecosystem Coordination Meeting, 10/9-12/12, Oakland, CA
* Sterling, Thomas. “Exascale HPC Runtime Opportunities and Challenges,” ExaChallenge
Symposium, 10/14-20/12, Dublin, Ireland
* Sterling, Thomas. “Broader Engagement and Education in the Exascale Era,” Supercomputing
Conference, 11/10-16/12, Salt Lake City, UT
* Sterling, Thomas. “The ParalleX Execution Model for Extreme Scale Computing,” Russian
Supercomputing Conference, 11/27-12/1/12, Moscow, Russia
¢ Sterling, Thomas. “Connections for Coordination of DOE Exascale Research and Development,”
2.11-2.13.13: Exascale Ecosystem Conference, 2/11-13/12, Livermore, CA
e ASCR Summit, 2/28/13, Germantown, MD
e PENDING: 9" Workshop on High-Performance, Power-Aware Computing (in conjunction with
IPDPS 13), 5/13/2013, Boston, MA (UNC/RENCI)

Publications

Publications resulting from the XPRESS project include:

* Support For Dependency Driven Executions Among. OpenMP Tasks. Priyanka Ghosh, Yonghong
Yan, and Barbara Chapman. The 2nd Workshop on Data-Flow Execution Models for Extreme
Scale Computing (DFM 2012) in conjunction with PACT 2012.

* Power Measurement and Concurrency Throttling for Energy Reduction in OpenMP Programs —
Allan Porterfield, Stephen L. Olivier, Sridutt Bhalachandra, and Jan F. Prins. gth Workshop on
High-Performance, Power-Aware Computing May 2013 Boston MA USA.

Publications in development include:

* Publication in development: HPX/APEX/RCR integration paper. International Workshop on
Runtime and Operating Systems for Supercomputers (ROSS 2013), submission deadline March

15. (UO)

Next Steps — Year 2

Year 2 activities of the XPRESS project will include:

Component

Year 2 Tasks

Lead Institution(s)

OpenX Software
Architecture

* Complete the OpenX architecture

SNL, IU

ParalleX Execution * Finalize and document the new generation ParalleX execution model with | U
Model locality management and introspective scheduling prioritization policies

HPX-4 Runtime * Complete the HPX-3 to LXK stacking and design, and build new handler U
System and LCO operators for HPX-4

LXK Operating . Develop functional scalable version of OS for operation, testing, and SNL, LSU

System

evaluation

* Integrating support for the Process Management Interface (PMI) into
Kitten

* Developing an implementation of the Parcels communication layer on top
of Portals 4

Component Year 2 Tasks Lead Institution(s)
XPI * Finalize API specification and implement first reference implementation U
with interface to HPX-3
RIOS * Publish specification of interface between OS and runtime system SNL, IU
Compilation/ * Develop and integrate contention/energy models into HPX and APEX UNC/RENCI
Introspection * Improve/increase data sources for models by integrating into LXK
* Finish design and start implementing multi-node data collection and
contention/energy models
APEX Performance . HPX-3 ITT abstraction to use APEX measurement uo
Measurement * Measurement wrapper libraries for XPI
* Design measurement in APEX with full ParalleX context
* More (full) integration with RCRToolkit
* Develop performance data API for third-person observation of other
XPRESS layers
o XPl<->HPX<->0S
¢ Design an APEX event-driven performance model
Legacy Migration 3 Finish the integration of OpenMP/MPI runtime with HPX as needed for UH

step-1 migration and evaluating with benchmarks and applications

Initial implementation of OpenMP/MPI runtime using XPI interface
Adding those HPX/XPI features to the OpenUH OpenMP runtime that
could be leveraged with the upcoming OpenMP 4.0 features. The work are
parts of step-2 migration

Release a prototype implementation of OpenACC compiler in OpenUH

Experiments and
evaluation

Explore with application codes in XPI, MPI, and OpenMP on top of the
OpenX software stack

Applications

Conduct initial ports of test applications including Co-design center proxy
apps

Documentation

Publish specification reports for XPI, ParalleX, and RIOS, with Principles of
Operation for LXK and HPX-4

