

XPRESS
eXascale PRogramming Environment and System Software

GOAL

The goal of the XPRESS project is to enable extreme
scale computing including exascale by the end of the
decade and strong scaling by mid decade. To this
end, the XPRESS project is to conduct the research
and development of OpenX, a complete system
software architecture for Exascale computing. The
four principal R&D thrusts include:

1) an Exascale lightweight kernel operating system
(LXK), based on the Kitten OS, to manage
billion-way hardware parallelism, management of
faults and power, management of global virtual
name space, and other features of future system
architectures;

2) a runtime system (HPX-4), co-designed with LXK,
which will be based on the ParalleX execution
model and will support dynamic resource
management and task scheduling;

3) system interfaces for interoperability between the
runtime system and both the OS and APIs; and

4) compilation strategies and systems to translate
MPI and OpenMP legacy codes to a form that can
be run by OpenX with performance at least as
good as a native code implementation.

TECHNICAL STRATEGY

XPRESS is organized as a set of cooperative tasks to
develop and test OpenX. These major tasks include:

 OpenX software architecture: a conceptual
framework for the co-design and interoperability of
proof-of-concept XPRESS software stack

 ParalleX execution model: guiding principles for
co-design of components of OpenX stack with
advances in locality management and task
prioritization through introspection

 HPX runtime system: support of application
dynamic adaptive resource management, task
scheduling, and introspective control policies

 LXK operating system: lightweight kernel operating
system for order constant scalability and low/no noise
to manage resources

 RIOS: a realm of Exascale system operation unique
in the X-stack program. The full system stack
including the relationship between the new
generation of lightweight kernel operating systems
and runtime system software

 XPI advanced programming model: intermediate
form and low-level (readable) programming interface
reflecting the ParalleX model, providing a target for
source-to-source high level parallel language
translation, and supporting early direct programming
experimentation, measurement, and evaluation

 Performance measurement: provide parameters
and their mutual sensitivities to guide co-design and
quantify operational behavior

 Legacy application mitigation: ensuring seamless
transition of legacy codes in MPI and OpenMP to the
future generation of ParalleX based Exascale
systems

 Experiments and evaluation: critical to determining
degree of effectiveness and likelihood of ultimate
success as well as guiding corrective design changes
to achieve DOE objectives

 Applications: collaborations with Co-Design Centers
and other mission critical codes

 Documentation: as well as reporting to DOE X-stack
program management, to provide early adopters with
sufficient information to apply prototype programming
and execution environment

http://xstack.sandia.gov/xpress/

OpenX Architecture

YEAR ONE: PROGRESS

 OpenX software architecture: defined the
components of the for Exascale computing,
including ParalleX execution model, LXK operating
system, HPX-4 runtime system, interface protocol,
compilation methods, debugging tools,
instrumentation, fault tolerance, and power
management

 ParalleX: devised an initial simple model of locality
that distinguishes among pair-wise associations
with respect to their relative locality

 HPX: released HPX V0.9.5 (API and performance
counter improvements) and HPXC V0.2 (pthreads).
Developed the top-level software architecture for
the HPX-4 parcel handler and synchronization

 LXK: completed an initial analysis of the operating
system (OS) requirements for the HPX-3 runtime
system

 RIOS: explored the parcel interface which supports
message-driven computation to be conducted
across the system and between nodes. This is
helping to define the emerging protocol

 XPI: developed first full specification of the XPI
programming interface

 Introspective adaptation of system & application
code: designed how the information flow between
the initial performance tools will occur. Started the
implementation to merge the tools and performance
models

 APEX performance: developed APEX prototype
using TAU as the core measurement infrastructure.
Instrumented HPX-3 runtime thread manager with
APEX timers

 Legacy migration: defined strategy for adapting
legacy MPI and OpenMP programming models to
HPX. Started development of OpenACC compiler.
Completed a prototype implementation of
data-driven OpenMP execution model

YEAR TWO: PLANNED ACCOMPLISHMENTS

 OpenX software architecture: complete the OpenX
software architecture

 ParalleX: finalize and document the new generation
ParalleX execution model with locality management and
introspective scheduling prioritization policies

 HPX: complete HPX-3 to LXK stacking and design, and
build new parcel handler and LCO operators for HPX-4

 LXK: develop functional scalable version of OS for
operation, testing, and evaluation

 RIOS: publish specification of interface protocols
between OS and runtime system

 XPI: finalize API specification and implement first
reference implementation with interface to HPX-3

 Introspective adaptation of system & application
code: develop and integrate contention/energy models
into HPX and APEX. Improve/increase data sources for
models by integrating into LXK. Finish design and start
implementing multi-node data collection and contention/
energy models

 APEX performance: continue to develop and extend the
APEX prototype to expose the API for all layers of the
XPRESS stack to probe the performance data at the
system-wide resolution, with resource-centric reflection
and the implicit communication capabilities within HPX

 Legacy migration: finish the integration of OpenMP/MPI
runtime with HPX. Initial implementation of OpenMP/MPI
runtime using XPI interface. Release a prototype
implementation of OpenACC compiler in OpenUH

 Experiments and evaluation: explore with application
codes in XPI, MPI, and OpenMP on top of the OpenX
software stack

 Applications: conduct initial ports of test applications
including Codesign center proxy apps

 Documentation: write specification reports for XPI,
ParalleX, and RIOS, with Principles of Operation for LXK
and HPX-4

XPRESS
eXascale PRogramming Environment and System Software

