
Legacy
Applications

New Model
Applications

MPI
Metaprogramming

FrameworkDomain Specific
Active Library

Compiler

AGAS
name space
processor

LCO
dataflow, futures
synchronization

Lightweight
Threads

context manager

Parcels
message driven

computation

...

OpenMP

XPI

Task recognition Address
space control

Memory bank
control

OS
thread In

st
ru

m
en

ta
tio

n

Network
drivers

Distributed FrameworkOperating System

Hardware
Architecture

Operating
System

Instances

Runtime
System

Instances

PRIME MEDIUM
Interace / Control

{
{

Domain Specific
Language

+106 nodes ⇥ 103 cores / node + integration network

...

OpenX Software Architecture
Major Tasks

•	Performance models & metrics – provide parameters and their mutual
sensitivities to guide co-design and quantify operational behavior

•	ParalleX execution model – guiding principles for co-design of
components of OpenX software stack

•	OpenX software architecture – a conceptual framework for the co-design
and interoperability of proof-of-concept XPRESS software stack including
the RIOS interface protocol specification between the operating system
and runtime system

•	LXK operating system – Lightweight kernel operating system for order
constant scalability and low/no noise to manage resources

•	HPX runtime system – support of application dynamic adaptive resource
management, task scheduling, and introspective control policies

•	XPI advanced programming model – intermediate form and low-level
(readable) programming interface reflecting the ParalleX model, providing
a target for source-to-source high level parallel language translation, and
supporting early direct programming experimentation and measurement

•	Legacy application mitigation – ensuring seamless transition of legacy
codes and programming methods to the future generation of ParalleX
based exascale systems

•	Experiments and evaluation – Critical to determining degree of
effectiveness and likelihood of ultimate success as well as guiding
corrective design changes to achieve DOE objectives

•	Documentation – as well as reporting to DOE X-stack program
management, to provide early adopters with sufficient information to
apply prototype programming and execution environment

Team
The XPRESS Project is led by Sandia National Laboratories (SNL) and engages a team of 8 institutions including: Indiana University (IU), University of North
Carolina (UNC/RENCI), Oregon University (OU), University of Houston (UH), Louisiana State University (LSU), Oak Ridge National Laboratory (ORNL), and
Lawrence Berkeley National Laboratory (LBNL).

Goal
The XPRESS Project is one of four major projects of the DOE Office of Science ASCR X-stack Program initiated in September, 2012. The purpose of XPRESS
is to devise an innovative system software stack to enable practical and useful exascale computing around the end of the decade with near-term contributions
to efficient and scalable operation of trans-Petaflops performance systems in the next two to three years; both for DOE mission-critical applications. To this
end, XPRESS directly addresses critical challenges in computing of efficiency, scalability, and programmability through introspective methods of dynamic
adaptive resource management and task scheduling.

XPRESS: eXascale Programming Environment
and System Software

Goal: develop conceptual foundation
to dramatically increase efficiency and
scalability through dynamic resource
management and task scheduling, and
exploitation of new sources of parallelism

Means: An execution model to provide the
governing principles of computation to guide
the system codesign and interoperability of
software component layers and portability
across system classes

Performance Strategy:

•	Scalability through lightweight thread
parallelism with powerful fine-grain
synchronization mechanisms, global
barrier elimination, and exploitation of
intrinsic metadata parallelism

•	Latency mitigation through parcel
based message-driven computation for
limiting the number of remote actions,
redistribution of flow control, and
lightweight context switching

•	Overhead reduction through optimized
thread control and semantics of
synchronization for minimum work

•	Contention amelioration through dynamic
resource management

Emphasis on

•	Functionality: finding proper software architecture

•	Performance: finding hotspots, contention points,
reduce overheads, hide latencies, do analysis

•	API: finding the minimal but complete set of
required functions

•	Driven by real applications (AMR, Contact, Graphs,
CFD, GTC)

Main tasks

•	Manage parallel execution, mitigate latencies,
resolve contention, minimize overheads for
application in highly dynamic application
environments

•	Manage data dependencies,
allow for data driven execution

•	Enable medium to fine
grain parallelism

Implements

•	Global active address space
(AGAS), parcel transport, thread
management, local control objects,
parallel processes, performance
counter framework

Exposes Interfaces

•	Exposes a simple and usable interface to
applications

•	Tightly interacts with operating system to ensure
high application throughput and scalability

•	Guide software architecture design and
modularization, and API design and interface
definitions between modules

Enables

•	Experimental verification of design, system
architecture, and interfaces from very beginning

•	Serves as backbone for early XPI implementation
and early interoperability work (OpenMP, MPI)

•	Basis for early application development and testing

HPX Runtime System

Thread
Manager

Thread
Pool

LCOs

AGAS Address
Translation

Action
Manager

Interconnect

Parcel
Handler

Parcel
Port

Process Manager Local Memory
Management Performance Monitor

Performance Counters

…

ParalleX Execution Model HPX Runtime System

